
Abstract. We present auxilliary basis sets for the atoms
H to At ± excluding the Lanthanides ± optimized for an
e�cient treatment of molecular electronic Coulomb
interactions. For atoms beyond Kr our approach is
based on e�ective core potentials to describe core
electrons. The approximate representation of the elec-
tron density in terms of the auxilliary basis has virtually
no e�ect on computed structures and a�ects the energy
by less than 10ÿ4 a.u. per atom. E�ciency is demon-
strated in applications for molecules with up to 300
atoms and 2500 basis functions.
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1 Introduction

Molecular electronic structure theory is essentially
concerned with an accurate description of e�ects caused
by the interelectronic repulsion. This is most easily
demonstrated for density functional theory (DFT),
which is based on a separation of two-electron contri-
butions into a Coulomb and an exchange correlation
term de®ned in terms of the electron density q�r�

J � 1

2

Z
q�r1� 1r12 q�r2� ds; �1�

EXC �
Z

f �q;rq; . . .� ds: �2�

The conventional (exact) treatment of J in terms of two-
electron four-centre integrals scales quadratically with
molecular size for su�ciently large systems. The evalu-
ation of EXC typically requires a numerical integration

that has repeatedly been demonstrated ± at least in
principle ± to scale linearly with the size of the system [1].
The relative e�ort required to treat J and EXC depends,
of course, on the actual implementation but timings
reported for TURBOMOLE [2] are probably typical:
EXC requires more time than J for small molecules and
already less than 10% (of J) for medium-sized cases
(about 50 atoms, 500 basis functions).

The quest to extend the applicability of electronic
structure treatments to larger and larger systems has led
to intensive activities in developing e�cient methods to
deal with J . We only mention some very recent devel-
opments: linear scaling procedures to treat Coulomb,
Eq. (1), [3, 4] and exchange terms [5], attenuated Cou-
lomb operator techniques [6], and expansion of q�r� in
terms of an auxiliary (or ®tting) basis, here denoted the
RI-J (`resolution of the identity') approach

q�r� � ~q�r� �
X

a

caa�r� : �3�

To avoid confusion we will denote the a�r� always as
`aux-basis' and employ the term `basis' for the functions,
denoted m�r� or l�r�, used to represent molecular orbitals
(MOs).

Details of the RI-J approach have been described in a
recent article [2], and it has been demonstrated that
careful optimization of the aux-basis leads to consider-
able gains in performance and only marginal sacri®ces in
accuracy as compared to the conventional technique
based on four-centre integrals.

This work was based on and has been motivated by
earlier work of Jan AlmloÈ f and coworkers [7], which
dealt with two important aspects of the RI-J technique:

1. It was shown that the appropriate metric to be used
for the treatment of (3) should be based on the scalar
product

�q1jq2� �
Z

q�r1�q�r2�
jr1 ÿ r2j ds : �4�

2. It was demonstrated for the ®rst time that errors
resulting from the RI-J approximation could be made
su�ciently small if this metric was used.
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In this article we present aux-bases for the main row
and transition metal elements H to At for use in
connection with economic SVP1 (split valence plus po-
larization) [8] and extended TZVP (triple zeta valence
plus polarization) [9] basis sets. For the heavier atoms,
beyond Kr, our work is based on e�ective core potentials
(ECP). This approach is attractive since it is e�cient and
accounts for the most important relativistic e�ects.

The RI-J method also scales quadratically with sys-
tem size but computational costs are reduced to less than
10% of a conventional treatment of J [2]. If the break-
even point for conventional and linear scaling proce-
dures occurs between 200 and 500 basis functions [4], it
can be safely expected that the RI-J method is compet-
itive at least for up to 2000 to 5000 basis functions. The
methods presented in this work have a further advan-
tage: they are available and proven for large systems.

2 Atomic basis sets and ECPs

For the atoms H±Kr we complement our previous work
dealing with SVP bases and present aux-basis sets suited
for TZVP bases. TZVP typically includes three Gaussian
functions for each valence AO (atomic orbital) and a
much more accurate representation of core AOs than
SVP.

For main row and transition metal atoms beyond Kr
we base our investigation on ECPs from the Stuttgart
group [10]. The ECPs are of type `mwb' (multielectron ®t
[11] to the quasirelativistic Wood-Boring total valence
energies [12]) which includes relativistic corrections. The
following core sizes have been selected:

Rb ± Cd: ECP-28 (core 1s-3d)
In ± Ba: ECP-46 (core 1s-4d)
Hf ± Hg: ECP-60 (core 1s-4f )
T1 ± At: ECP-78 (core 1s-5d)

With this choice we favour relatively small cores, since
this appears necessary especially in DFT treatments [13].
However, the ECPs for In and T1 leave only three
valence electrons and should be applied with great care
since spurious e�ects cannot be excluded. To a lesser
extent this warning also applies for the following
elements Sn and Pb. For the basis sets to be used in
connection with these ECPs we have essentially relied on
the results of the Stuttgart group [10]. We have
employed analytic gradient techniques to reoptimize
orbital exponents and contraction coe�cients by mini-
mizing atomic SCF energies [8]. In the course of the
basis set optimizations it appeared appropriate to
modify most of the original basis sets ± mainly designed
to treat excited states of atoms ± since a reduced number
of primitive Gaussians and/or contractions turned out to
be su�cient for molecular ground states. Despite the
reduction in basis set size we have typically achieved a
lowering of atomic SCF energies by a few mH (1 mH =
2.6 kJ/mol).

Our modi®cations concern mainly the transition
metals. We propose two basis sets denoted SVP and
TZVP which ± for the sake of simplicity ± are both de-
rived from the very same set of primitive Gaussians and
di�er only in the contraction of the d functions, in the
usual nomenclature,

Y ± Cd: (7s;6p;5d); SVP: [5s;3p;2d], TZVP: [5s;3p;3d]
Hf ± Hg: (7s;6p;5d); SVP: [6s;3p;2d], TZVP: [6s;3p;3d] .

The s functions include two (uncontracted) Gaussians
describing the 5s and 6s AO, respectively. The most
di�use p function is of 5p and 6p type and thus a
polarization function for the valence s AO.

3 Auxiliary basis sets

We have employed exactly the same techniques and
®tting criteria to determine aux-bases as described in our
previous work [2], and the reader is referred to this paper
for details. The aux-bases are optimized as much as
possible in atomic calculations, e.g. to determine their s; d
and g parts. The p and f aux-basis functions have been
optimized in representative molecular calculations. The
basis set parameters obtained in this way served as a guide
to ®x the parameters for the remaining atoms. The design
goals have also been taken from our previous work:

1. the error of J [resulting from the approximation,
Eq. (3)] should be smaller than 0.02 mH in atomic
calculations especially if the atomic density is not
spherically symmetrical and includes d and g partial
waves;

2. maximal errors of molecular Coulomb energies J
should be 0.2 mH per atom at most. This threshold
was chosen since the error in atomic SCF energies
caused by even extended Gaussian basis set expan-
sions is typically much larger than 1 mH.

3.1 Aux-bases for H±Kr

For designing aux-bases to be used in connection with
TZVP bases sets, we have drawn on our experience with
SVP basis sets. For the atoms beyond Ne it was found
that the `SVP aux-bases' ful®l the ®tting criteria even for
the TZVP basis and no appreciable improvement could
be obtained by a reoptimization. This somewhat fortu-
nate result demonstrates two important aspects: the SVP
basis provides a reliable approximation of molecular
densities q�r�, which is only slightly improved by TZVP
treatments, and aux-bases are relatively insensitive with
respect to details of q�r�.

For the ®rst row atoms Li±Ne we had to extend the s
part of the aux-basis (for TZVP as compared to SVP) to
9 primitives (instead of 8). The ®nally resulting aux-basis
is characterized as:

Li±Ne, TZVP (9s;3p;3d;1f ) / [7s;3p;3d;1f ]

This aux-basis can also be used in conjunction with an
extended polarization basis such as 2dlf (added to TZV)
without loss in accuracy.

1 If polarization functions on hydrogen atoms are deleted the basis
set is referred to as SV(P)
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3.2 Aux-bases for Rb±Cd, Cs, Ba, Hf±Hg

We propose a single aux-basis for each atom which can
be used for SVP and TZVP basis sets. This simpli®cation
is well justi®ed since SVP and TZVP are based on the
same primitives and di�er only in the contraction
pattern. We typically arrive at the following:

aux-basis (9s;4p;4d;3f ;4g)/[7s;4p; 3d;3f ;2g] .

Deviations from this speci®cation mainly occur for
alkali and alkaline earth metals. For Sr and Ba it is
possible to reduce the polarizing functions to an
uncontracted (3p;3d;2f ;1g) aux-basis; for Rb and Cs
(4p; 4d)/ [2p;2d] was found to be su�cient. The variation
in the aux-basis size re¯ects the chemical behaviour of
the elements. Rb and Cs form mainly ionic bonds, and if
there are covalent contributions (Rb2, etc.) they are
dominated by valence s AOs, and either case is easy to
describe. For Sr and Ba there are increased contributions
of p and especially d AOs even in ionic compounds
which require up to g functions in the aux-basis.
Transition metals with an atomic occupation leading
to a density q�r� which is not spherically symmetrical
require four g functions for a reliable description.

3.3 Aux-bases for In±Xe and Tl±At

For these elements only the valence s and p AOs are
treated explicitly, the other electrons are incorporated in
the core described by the ECP. Our work is in part
preliminary, as mentioned above, since for In, Sn, Tl and
Pb a smaller core appears preferable. As a consequence

of the small number of valence electrons one also gets a
small number of aux-basis functions, typically:

aux-basis (5s;3p;3d;1f ;1g)/[4s;3p;2d;1f ;1g]

3.4 Documentation

The aux-bases described here and in a previous paper
(together with the corresponding basis sets to represent
AOs) as well as the actual ECP parameters are available
via FTP (®le transfer protocol) at internet address
``ftp.chemie.uni-karlsruhe.de'' (internet number 129.13.
106.9) with login-ID ``anonymous'' in the directory
``/pub/ri-j'' or as supplementarymaterial from the journal
upon request.

For each atom we report the error in the atomic
Coulomb energy J resulting from the approximate
representation of q�r�, Eq. (3), as well as the error of J
for at least one small molecule.

4 Accuracy: molecular energies and structure constants

In Table 1 we report errors caused by the RI-J
approximation. This is done for the B-P parametrization
[14] of the DFT in using grid m3 and m4 (which are
explained below) for the quadrature. Since we consider
an approximation of J , it is expected that neither the
DFT parametrization nor the actual quadrature
employed a�ects the results, as has been con®rmed in
test calculations.

The largest molecules of the test sample are shown in
Figs. 1 and 2. The CdSe clusters are fractions of

Table 1. Accuracy DE (in mH)
of computed total energies and
maximum deviations of bond
distances (Dr in pm) achieved
with the pesent auxiliary basis
sets in comparison to DFT
results; all calculations have
been performed using the B-P
parametrization [14]. The
following shorthand notation
has been used: Ph � C6H5,
en � C2H4N2

Molecule/symmetry Basis Grid DE N a
atom Dr

Ag�4 =D2h SVP m3 0.288 4 0.0092
Sb4=Td SVP m3 0.251 4 0.0002
I2=D1h SVP m3 0.199 2 0.0195
IF3=C2v SVP m3 0.154 4 0.0045
Ta2Cl10=C2h SVP m3 1.122 12 0.0052
OsO4=Td SVP m3 0.266 5 0.0022
Hg2Cl2=D1h SVP m3 0.497 4 0.0874
HgCl2=D1h SVP m3 0.188 3 0.0066
PbO=C1v SVP m3 0.109 2 0.0059
PbO2=D1h SVP m3 0.099 3 0.0399
Pd(en)C11H18O6�=Cb

1 SVP m3 4.514 48 ±c

Pt (PPh3�3CO=C3 SV(P)d m3 3.040 105 0.0454
`Cd32Se50'=T e SV(P) m4 5.306 134 ±c

`Cd10Se16'=T f SV(P)g m3 13.860 294 ±c

C2H2=D1h TZVP m3 0.099 4 0.0181
C6H6=D6h TZVP m3 0.724 12 0.0035
NO=C1v TZVP m3 0.335 2 0.0056
N2=D1h TZVP m3 0.096 2 0.0010
Cr(C6H6�2=D6h TZVP m3 1.359 25 0.0058
Hg2Cl2=D1h TZVP m3 0.575 4 0.0365

a Number of atoms
b Ref. [21]
c No conventional DFT structure optimization performed
d SV bases for Ph ligands and SVP for the remaining atoms
e Cd32Se14(SeH)36�PH3�4; Ref. [15], See Fig. 1
f Cd10Se4(SePh)12�PPh3�4; Ref. [15], See Fig. 2
g Ph ligands decribed by single zeta (SZ) bases as explained in the text
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sphalerite crystal structure with a cluster core Cd10Se16
and Cd32Se50, respectively. The compounds are known
experimentally [15]; the dangling bonds of Se are
saturated by phenyl groups as in Fig. 1. For the larger
cluster, Fig. 2, we have replaced the phenyl groups by
hydrogen atoms.

Errors in computed DFT energies are typically below
0.1 mH per atom, much like in our previous work for
SVP bases for H±Kr. The largest error in [2] occurred for
the molecule NO with 0.3 mH per atom, second line of

Table 1 in [2]. This was actually a mistake on our part:
the error is only 0.14 mH per atom.

The errors DJ resulting from the RI-J approxima-
tion always have the same sign and thus largely cancel
for computed reaction energies. In our judgement even
an error of 0.1 mH per atom is of little consequence,
since it is at least an order of magnitude smaller than
errors introduced by the basis set employed to rep-
resent MOs and especially the errors owing to the
DFT.

For the largest molecule included in Table 1,
Cd10Se4�SePh�12�PPh3�4 with 294 atoms, even the total
error in the energy resulting from the RI-J approxima-
tion is only 14 mH (less than 9 kcal/mol or 40 kJ/mol): a
corresponding accuracy presently appears out of reach
of any experimental technique.

The deviations in computed bond distances are typi-
cally below 0.1 pm and therefore almost meaningless
(this error is already within the scatter of the relaxation
procedure employed to determine equilibrium struc-
tures).

5 Representative timings

The present code di�ers in some details from the one
described previously [2]:

1. Integral routines have been extended to the treatment
of functions with higher l quantum numbers: up to g
functions (l=4) in the basis set and up to i (l = 6)
functions in the aux-basis.

2. Special routines for three-centre integrals �mlja� have
been included for s and p functions, e.g. (ssjs) up to
(ppjp) and (dsjp).

3. In the quadrature we employ multi-grids proposed by
Tozer et al. [16]. Based on our previous grids with size
1 (coarse) to 5 (®ne) we now use the multigrids m3 to
m5: in the SCF iterations grids 1±3 are applied, the
®nal energy and the gradient are evaluated with grids
3±5 (an upgrade by two stages in grid size). We
recommend grid m3 for smaller molecules, less than
50 atoms, and grid m4 for larger molecules. The
multi-grid feature reduces costs for the quadrature to
less than 30% without loss in accuracy.

4. Fine-tuning in the prescreening techniques to avoid
the accumulation of negligible contributions ± inte-
grals and quadrature ± have also increased e�ciency
[17].

5. The construction of the inverse of �ajb� is now
avoided, the system of linear equations necessary for
the RI-J technique, Eq. (7) of [2], is now solved
directly by the Cholesky decomposition of �ajb� [18].

6. Memory requirements have been reduced by more
careful dynamic storage allocations.

In Table 2 we pesent timings obtained with the
present code, TURBOMOLE 4.0. All molecules con-
sidered show three-dimensional space ®lling. We have
not included `one-dimensional' model systems, which
would lead to considerably better timings for the quad-
rature and the evaluation of J . For a better comparison

Fig. 1. Computed structure of Cd10Se4�SePh�12�PPh3�4 [15] in T
symmetry; H atoms are not shown

Fig. 2. Computed structure of Cd32Se14�SeH�36�PH3�4 [15] in T
symmetry, H atoms are not shown
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of timings we further note that using grid m4 is roughly
twice as costly as using grid m3.

On our HP J210 workstation (HP PA RISC 7200)2,
equipped with 1 GB main memory, we can easily store
the three-centre integrals �mlja� for up to 500 basis
functions in C1 symmetry, case 1 in Table 2, and up to
about 2000 basis functions in Oh symmetry. In this
in-core mode, costs for RI-J are just 0.5% of that for a
conventional treatment of J , and the quadrature remains
as the only demanding part of the calculation.

In the direct mode ± the �mlja� are computed twice in
each iteration unless their contribution is negligible [2] ±
costs for quadrature and RI-J are comparable only for
the smallest molecule, case 1, but the RI-J part slightly
dominates for the larger cases. This re¯ects the di�erent
scaling behaviour: costs scale asymptotically as N2 for
RI-J and increase like N1:5 for the quadrature imple-
mented in TURBOMOLE. The picture would be dif-
ferent without the multi-grid feature since costs for the

quadrature would increase by a factor of three and this
step would normally dominate. In any case it can be seen
that even RI-J in direct mode is at least 10 times faster
than the conventional evaluation of coulomb terms.

In the semi-direct mode we store the most costly in-
tegrals in memory and recompute only the remaining
ones in each iteration. For all cases in Table 2 in which
we allocate �650 MB we gain at least a factor of 22 as
compared to a conventional treatment of J .

The third example in Table 2 is somewhat special
since we have used a highly contracted basis set for the
phenyl group. This was derived from a fully molecule
optimized basis for benzene [8], characterized as (7s;4p)/
[3s;1p] for C and (4s)/[1s] for H. Despite the contraction
to almost single zeta, this basis gives a reliable descrip-
tion of bonding, structure and steric requirements. For
the phenyl group we use this basis for all except the link
atom where an SV basis is used. This procedure leads to
a relatively small number of basis functions and a large
number of aux-basis functions.

The timings presented in Table 2 can be considered as
worst case since we have always employed the full aux-
basis described in the present work. This is a conserva-
tive procedure since reduced aux-bases obtained by

Table 2. Timings, in seconds for
an HP J210 workstation, for the
dominant steps in an SCF-DFT
calculation for selected
molecules from Table 1

Molecule/symmetry Na
BF Nb

J Memoryc tdprep teRIÿJ=type
f tgquad=grid thJ

Pd(en)�C11H18O6�=C1 448 1053 9 15.62 195:22=d 226.94 /m3 2227.64
269 81.50 83:93=sd
646 129.19 11:08=i

Pt (PPh3�3CO=C3 682 2490 7 14.80 433:18=d 260.91/m3 4216.90
251 117.11 257:62=sd
687 206.15 114:79=sd

`Cd10Se16'=T 1880 6032 16 10.36 1084:75=d 296.07/m3 14030.96
596.02/m4

277 132.59 874:93=sd
634 271.01 640:38=sd

`Cd32Se50'=T 2536 4776 28 7.30 1154:08=d 749.15/m4 17889.87
253 113.07 964:33=sd
610 206.19 807:96=sd

a Number of orbital basis functions
b Number of auxiliary basis functions
c Core memory allocated for RI-J arrays in MB
d Time for computation of in-core arrays �mlja�; �ajb�, and decomposition of �ajb�
e Time per iteration for the calculation of the RI-J coulomb part
f In-core (i), semi-direct (sd) or direct (d) treatment of the RI-J coulomb part
g Time for the calculation of EXC and the grid used
h Time for the conventional calculation of the coulomb terms (®rst SCF iteration)

Table 3. Timings, in minutes for
an HP J210 workstation, for
complete energy and gradient
calculations for selected
molecules from Table 1

Molecule/symmetry Memorya Nb
iter tcRI energy tdRI grad teDFT energy tfDFT grad

Pd (en)�C11H18O6�=C1 646 17g 99 31 480 83
Pt�PPh3�3CO=C3 688 19g 167 58 998 127
`Cd10Se16'=T 732 11h 230 98 ± ±
`Cd32Se50'=T 610 9h 290 125 ± ±

a Core memory in MB for the RI-J energy calculation
b Number of iterations needed for convergence
c Time for the complete RI-J energy calculation
d Time for the complete RI-J gradient calculation
e Time for the complete conventional DFT energy calculation
f Time for the conventional DFT gradient calculation
g Extended HuÈ ckel guess
h Typical structure optimization cycle

2 The HP workstation is slightly slower, deviations of about 20%,
than an IBM RISC 6000/390 (3CT) or an SGI Power Challenge
with an R 8000 CPU.
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deleting f and/or g functions will su�ce in many cases
at least for structure determinations [2, 19, 20].

Table 3 ®nally gives the total CPU time needed for
complete RI-J energy and gradient calculations in
comparison with a conventional run. For energy calcu-
lations we gain at least a factor 5 to 6, and the gradient is
up to 3 times faster than in a conventional treatment.
For a whole cycle of a structure optimization this means
an e�ective acceleration of a factor 4 to 5 in the examples
given.

A typical geometry optimization iteration cycle
(energy plus gradient) for Cd10Se4�SePh�12(PPh3�4, Fig.
1, with 294 atoms, or Cd32Se14�SeH�36�PH3�4, Fig. 2,
with 2536 basis functions requires about 7 h on a
workstation in the relatively low symmetry T . This
makes structure optimizations possible.

6 Summary

We have presented accuracies and timings which dem-
onstrate that the RI-J method allows for the treatment
of molecules with up to 300 atoms and/or 2500 basis
functions in moderate symmetry (D2h or T ) on work
stations. The sample molecules considered in the present
work are not model cases: all systems treated were
brought to our attention since there were problems with
experiments, and geometry optimizations have been
carried out in all cases. The methodology presented is
proven for molecules involving main row elements and
transition metals ± only Lanthanides and Actinides are
not covered in this work. The aux-bases described in the
present article together with the RI-J method have
further been shown to be valuable for the treatment of
electronic excitations within DFT methods [17]. The
gains in e�ciency and the accuracy achieved by using the
RI-J method are comparable to the results presented
here, and allow for the ®rst time the treatment of
electronic excitations for systems of the size considered
in this work.

The e�ciency of the RI-J technique can still be
considerably improved. For large molecules one has to
use the direct mode and the computation of �mlja�
becomes the dominant step. If the di�erential overlap
between m�r�l�r� and a�r� is su�ciently small, one can
replace a�r� by a point charge if a is an s function, a

point dipole if a is a p function, etc. These cases still scale
quadratically with system size but the evaluation is less
costly. Explicit evaluation of �m lja� is thus only required
for overlapping m�r�l�r� and a�r�, which scale linearly
with molecular size.
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